Articles
Why Do We Understand Emergency Messages—or Not? Identifying Their Explanatory Conditions Using csQCA.
Published 2025-09-11
Keywords
- csQCA,
- Descriptive Inference,
- Early Warning Systems,
- Stimulus–Organism– Response

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Why Do We Understand Emergency Messages—or Not? Identifying Their Explanatory Conditions Using csQCA. (2025). JOINETECH (International Journal of Economic and Technological Studies), 1(01), 41-54. https://doi.org/10.65479/joinetech.17
Downloads
Download data is not yet available.
Abstract
Objective and significance of the study: In recent years, the frequency and intensity of natural disasters have significantly increased, prompting public managers to develop early warning systems. However, these systems have prioritized technological advancements over identifying the conditions that influence their adoption and use by individuals. Methodology: This study examines the factors that explain citizens’ understanding of emergency alert messages, applying crisp-set qualitative comparative analysis to a sample of 188 Internet users who have received such alerts. Key findings: Based on the stimulus–organism–response theory, the findings indicate that understanding the content of these messages can be attributed to stimuli or the combination of stimuli and organisms. Study limitations: The work focuses on a sample composed of people between 35 and 44 years old. Practical value of the findings: The study explores the conditions underlying the lack of comprehension of these messages, emphasizing the importance of recipients’ gender and highlighting how different combinations of stimulus and organism elements contribute to this outcome.References
- Abbasi, G.A., Goh, Y.N., Iranmanesh, M., & Liébana-Cabanillas, F. (2924). Determinants of continuous intention to use retail apps: A hybrid PLS-ANN approach. Journal of Marketing Theory & Practice, 32(3), 413-434. https://doi.org/10.1080/10696679.2023.2218098
- Al-Debei, M.M., Dwivedi, Y.K., & Hujran, O. (2022). Why would customers continue to use mobile value-added services? Journal of Innovation & Knowledge, 7, 100242. https://doi.org/10.1016/j.jik.2022.100242
- Al-Rawas, G., Nonkoo, M.R., & Al-Wardy, M. (2024). A review of the prevention and control of flash flood hazards on a global scale: Early Warning Systems, vulnerability assessment, environmental, and public health burden. International Journal of Disaster Risk Reduction, 115, 105024. https://doi.org/10.1016/j.ijdrr.2024.105024
- Asociación para la Investigación de los Medios de Comunicación (AIMC) (2023). Navegantes en la Red. 25ª Encuesta AIMC a usuarios de Internet. https://www.aimc.es/a1mc-c0nt3nt/uploads/2024/05/Navegantes2022.pdf
- Asociación para la Investigación de los Medios de Comunicación (AIMC) (2024). Navegantes en la Red. 26ª Encuesta AIMC a usuarios de Internet. https://www.aimc.es/a1mc-c0nt3nt/uploads/2024/03/Navegantes2023.pdf
- Baumgartner, M. (2015). Parsimony and Causality. Quality & Quantity, 49, 839-856. https://doi.org/10.1007/s11135-014-0026-7
- Bonaretti, D., & Fischer-Preßler, D. (2021). The problem with SMS campuses warning systems: An evaluation based on recipients’ spatial awareness. International Journal of Disaster Risk Reduction, 54, 102031. https://doi.org/10.1016/j.ijdrr.2020.102031
- Brush, G.J., Guo, X., Hunting, A., & Frethey-Bentham, C. (2024). Using Qualitative Comparative Analysis to Identify Complex Solutions and Optimal Combinations of Conditions Influencing COVID Vaccine Acceptance: A Primer for QCA. Journal of Macromarketing, 44(2), 276-306. https://doi.org/10.1177/02761467231182300
- Chatfield, A.T., Scholl, H.J.(J.), & Brajawidagda, U. (2013). Tsunami early warnings via Twitter in government: Net-savy citizens’ co-production of time-critical public information services. Government Information Quarterly, 30, 377-386. https://doi.org/10.1016/j.giq.2013.05.021
- Chen, T., Gil-García, R., Burke, G.B., Dey, A., & Werthmuller, D. (2024). Characterizing technology affordances, constraints, and coping strategies for information dissemination to the public: Insights from emergency messaging in U.S. local governments. Government Information Quarterly, 41, 101910. https://doi.org/10.1016/j.giq.2024.101910
- Clarkson, G., Jacobsen, T.E., & Batcheller, A.L. (2007). Information asymmetry and information sharing. Government Information Quarterly, 24, 827-839. https://doi.org/10.1016/j.giq.2007.08.001
- Dargin, J.S., Fan, C., & Mostafari, A. (2021). Vulnerable populations and social media use in disasters: Uncovering the digital divide in three major U.S. hurricanes. International Journal of Disaster Risk Reduction, 54, 102403. https://doi.org/10.1016/j.ijdrr.2021.102043
- David-West, O., Iheanachor, N., & Umukoro, I. (2020). Sustainable business models for the creation of mobile financial services in Nigeria. Journal of Innovation & Knowledge, 5, 105-116. https://doi.org/10.1016/j.jik.2019.03.001
- Eom, S.-J., Hwang, H., & Kim, J.H. (2018). Can social media increase government responsiveness? A case study of Seoul, Korea. Government Information Quarterly, 35, 109-122. https://doi.org/10.1016/j.giq.2017.10.002
- Fischer-Preßler, D., Banaretti, D., & Bunker, D. (2024). Digital transformation in disaster management: a literature review. Journal of Strategic Information Management, 33, 101865. https://doi.org/10.1016/j.jsis.2024.101865
- Fischer-Preßler, D., Bonaretti, D., & Fischbach, K. (2022). A Protection-Motivation Perspective to Explain Intention to Use and Continue to Use Mobile Warning Systems. Bus Inf Syst Eng, 64(2), 167-182. https://doi.org/10.1007/s12599-021-00704-0
- Fiss, P.C. (2011). Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. Academy of Management Journal, 54(2), 393–420. https://doi.org/10.5465/amj.2011.60263120
- Glaesser, J. (2023). Limited diversity and QCA solution types: assumptions and their consequences. Quality & Quantity, 57, 3485-3497. https://doi.org/10.1007/s11135-022-01483-w
- Goyal, S., Chauchan, S., & Gupta, P. (2022). Users` response toward online doctor consultation platforms: SOR approach. Management Decision, 60(7), 1990-2018. https://doi.org/10.1108/MD-02-2021-0268
- Grofman, B., & Schneider, C.Q. (2009). An Introduction to Crisp Set QCA, with a Comparison to Binary Logistic Regression. Political Research Quarterly, 62(4), 662-672. https://doi.org/10.1177/1065912909338464
- Hazari, S., & Sethna, B.N. (2023). A Comparison of Lifestyle Marketing and Brand Influencer Advertising for Generation Z Instagram Users. Journal of Promotion Management, 29(4), 491-534. https://doi.org/10.1080/10496491.2022.2163033
- Hussain, A., Ting, D.H., Abbasi, A.Z., & Rehman, U. (2023). Integrating the S-O-R Model to Examine Purchase Intention Based on Instagram Sponsored Advertising. Journal of Promotion Management, 29(1), 77-105. https://doi.org/10.1080/10496491.2022.2108185
- Ingrams, A. (2023). Do public comments make a difference in open rulemaking? Insights from information management using machine learning and QCA analysis. Government Information Quarterly, 40, 101778. https://doi.org/10.1016/j.giq.2022.101778
- Kalpana, P.G.D. (2023). Factors influencing proactiveness in supply chain risk identification: A fuzzy-set qualitative comparative analysis. International Journal of Disaster Risk Reduction, 88, 103614. https://doi.org/10.1016/j.ijdrr.2023.103614
- Kang, W., Shao, B., & Zhang, Y. (2024). How does Interactivity Shape Users’ Continuance Intention of Intelligent Voice Assistants? Evidence from SEM and fsQCA. Psychology Research and Behavior Management, 17, 867-889. https://doi.org/10.2147/PRBM.S438465
- Li, J., Zhang, S., & Ao, W. (2023). Why is instant messaging not instant? Understanding users` negative use behaviour of instant messaging software. Computers in Human Behavior, 142, 107655. https://doi.org/10.1016/j.chb.2023.107655
- Li, S., Zhu, B., & Yu, Z. (2024). The Impact of Cue-Interaction Stimulation on Impulse Buying Intention on Virtual Reality Tourism E-commerce Platforms. Journal of Travel Research, 63(5), 1256-1279. https://doi.org/10.1177/00472875231183163
- Li, Z., Zhou, Y., Wong, Y.D., Wang, X., & Yuen, K.F. (2021). What influences panic buying behaviour? A model based on dual-system theory and stimulus-organism-response framework. International Journal of Disaster Risk Reduction, 64, 102484. https://doi.org/10.1016/j.ijdrr.2021.102484
- Lim, X-J., Cheah, J-H., Ng, S.I., Basha, N.K., & Liu, Y. (2021). Are men from Mars and women from Venus? Examining gender differences towards continuous use intuition of branded apps. Journal of Retailing and Consumer Services, 60, 102422. https://doi.org/10.1016/j.jretconser.2020.102422
- Lindenlaub, S., Matthes, K.S., & Thieken, A.H. (2024). Improving purchathe understability of flood warning messages- Explorative study on design preferences. International Journal of Disaster Risk Reduction, 111, 104685. https://doi.org/10.1016/j.ijdrr.2024.104685
- Lluch, J., Abad, F., Calduch-Losa, A., Rebollo, M., & Juan, M-C. (2024). Gender differences and trens in the use of warables in marathons. Sustainable Technology and Entrepreneurship, 3, 100063. https://doi.org/10.1016/j.stae.2023.100063
- Luht-Kallas, K., Laanemaa, E., Taukar, M., Hatšaturjan, A., Kapura, J., Kibar, T., & Põld, M. (2023). Assessing the comprehensibility of SMS warnings: an example of crisis communication in the Estonian trilingual landscape. International journal of Disaster Risk reduction, 97, 104014. https://doi.org/10.1016/j.ijdrr.2023.104014
- Lyle, T.S., Fang, L.L., & Hund, S.V. (2024). Implications of disclosure and non-disclosure of flood hazard maps- a synthesis for the Canadian context. Canadian Water Resources Journal, 49(3), 282-299. https://doi.org/10.1080/07011784.2023.2287462
- Lyu, Y., Yuan, H., & Wang, Y. (2023). Economic vulnerability of aquaculture households of elderly people to typhoon disasters and the factors influencing it in the island regions of southeast China. International Journal of Disaster Risk Reduction, 85, 103492. https://doi.org/10.1016/j.ijdrr.2022.103492
- Ma, R., Liu, J., & An, S. (2024). Early warning response in brainstorming: Designing a model with incentive and supervision mechanisms based on the principal-agent theory. International Journal of Disaster Risk Reduction, 11, 104683. https://doi.org/10.1016/j.ijdrr.2024.104683
- Mao, Y., Wang, X., He, W., & Pan, G. (2024). An investigation into the influence of gender on crowd exit selection in indoor evacuation. International Journal of Disaster Risk Reduction, 108, 104563. https://doi.org/10.1016/j.ijdrr.2024.104563
- Marzi, G., Balzano, M., Caputo, A., & Pellegrini, M.M. (2024). Guidelines for Bibliometric-Systematic Literature Reviews: 10 steps to combine analysis, synthesis and theory development. International Journal of Management Reviews. https://doi.org/10.1111/ijmr.12381
- Medina-Molina, C., Ribeiro Soriano, D., & Gonzáles-Tejero, C.B. (2023). Multi-level corporate entrepreneurship in SMEs: an intra-metropolitan analysis. Review of Managerial Science, 17, 2185-2213. https://doi.org/10.1007/s11846-022-00575-z
- Mehrabian, A., & Russell, J.A. (1974). An approach to environmental psychology. MIT Press.
- Meléndez-Landaverde, E.R., & Sempere-Torres, D. (2025). Design and evaluation of a community and impact-based site-specific early warning system (SS-EWS): The SS-EWS framework. Journal of Flood Risk Management, 18, e12860. https://doi.org/10.1111/jfr3.12860
- Mello, P.A. (2021). Qualitative Comparative Analysis. An Introduction to Research Design and Application. Georgetown University Press.
- Molinillo, S., Aguilar-Illescas, R., Anaya-Sánchez, R., & Liébana-Cabanillas, F. (2021). Social commerce website design perceived value and loyalty behavior intentions: The moderating roles of gender, age and frequency of use. Journal of Retailing and Consumer Services, 63, 102404. https://doi.org/10.1016/j.jretconser.2020.102404
- Neyazi, T.A., Nadaf, A.H., Tan, K.E., & Schroeder, R. (2024). Does trust in government moderate the perception toward the perception toward deepfakes? Comparative perspectives from Asia on the risks of AI and misinformation for democracy. Government Information Quarterly, 41, 101980. https://doi.org/10.1016/j.giq.2024.101980
- Nishant, R., Nguyen, T.(K)., Teo, T.S.H., & Hsu, P-F. (2024). Role of substantive and rhetorical signals in the market reactions to announcements on AI adoption: a configurational study. European Journal of Information Systems, 33(5), 802-844. https://doi.org/10.1080/0960085X.2023.2243892
- Oana, I.E., & Schneider, C.Q. (2024). A robustness test protocol for applied QCA: Theory and R software application. Sociological Methods & Research, 53(1), 57-88. https://doi.org/10.1177/00491241211036158
- Oana, I-E-. Schneider, C.Q., & Thoman, E. (2021). Qualitative Comparative Analysis Using R. A Beginner’s Guide. Cambridge University Press.
- Obeidat, Z.M., Alawan, A.A., Baabdullah, A.M., Obeidat, A.M., & Dwivedi, Y.K. (2022). The other customer online revenge: A moderated mediated model of avenger expertise and message trustworthiness. Journal of Innovation & Knowledge, 7, 100230. https://doi.org/10.1016/j.jik.2022.100230
- Ott, U.F., Williams, D., Saker, J., & Staley, L. (2019). A configurational analysis of the termination scenarios of international joint ventures: All is well that ends well. Journal of Innovation & Knowledge, 4(3), 202-210, https://doi.org/10.1016/j.jik.2019.01.004.
- Payal, R., Sharma, B., & Zhang, Y. (2024). Unlocking the impact of brand engagement in the metaverse on Real-World purchase intentions. Analyzing Pre-Adoption behaviour in a futuristic technology platform. Electronic Commerce Research and Applications, 65, 101389. https://doi.org/10.1016/j.elerap.2024.101381
- Rathim, M., Majumdar, A., & Rathl, S. (2024). Unraveling Prosumption Behavior for Online Reviews during Environmental Uncertainty: A Stimulus-Response-Perspective. Information Systems Frontiers. https://doi.org/10.1007/s10796-024-10557-z
- Rodríguez-Torrico, P., San-Martín, S., & San José-Cabezudo, R. (2019). What Drives M-Shoppers to Continue Using Mobile Devices to Buy? Journal of Marketing Theory & Practice, 27(1), 83-102. https://doi.org/10.1080/10696679.2018.1534211
- Roig-Tierno, N., González-Cruz, T.F., & Llopis-Martínez, J. (2017). An overview of qualitative comparative analysis: A bibliometric analysis. Journal of Innovation & Knowledge, 2, 15-23. https://doi.org/10.1016/j.jik.2016.12.002
- Roux, T., & Maree, T. (2021). Joy to the (Shopper) World: An S-O-R View of Digital Place-Based Media in Upmarket Shopping Malls. Journal of Promotion Management, 27(7), 1031-1060. https://doi.org/10.1080/10496491.2021.1888177
- Ruiz, C.D., & Nilsson, T. (2023). Disinformation and Echo Chambers: How Disinformation Circulates on Social Media Through Identity-Driven Controversies. Journal of Public Policy & Marketing, 42(1), 18-35. https://doi.org/10.1177/07439156221103852
- Sahid, A., Maleh, Y., & Ouazzane, K. (2025). Changing landscape of fake news research on social media: a bibliometric analysis. Qual Quant, https://doi.org/10.1007/s11135-024-02048-9
- Salgado, M.J.H., Alfonso, L., & Upegui, J.J.V. (2025). Towards integrating community and institutional flood early warning systems: A framework applied to an Andean tropical case. International Journal of Disaster Risk Reduction, 116, 105126. https://doi.org/10.1016/j.ijdrr.2024.105126
- Schneider, C.Q. (2024). Set-Theoretic Multi-Method Research. A Guide to Combining QCA and Case Studies. Cambridge University Press.
- Schneider, C.Q., & Wageman, C. (2013). Set-Theoretic Methods for the Social Sciences. Cambridge University Press.
- Shareef, A., Dwivedi, Y.K., Arya, V., & Siddiqui, M.Q. (2021). Does SMS advertising still have relevance to increase consumer purchase intention? A hybrid PLS-SEM-neural network modelling approach. Computers in Human Behavior, 124, 106919. https://doi.org/10.1016/j.chb.2021.106919
- Shareef, M.A., Dwivedi, Y.K., Kumar, V., & Kumar, U. (2017). Content design of advertisement for consumer exposure: Mobile marketing through smart messaging service. International Journal of Information Management, 37, 257-268. https://doi.org/10.1016/j.ijinfomgt.2017.02.003
- Shareef, M.A., Raman, R., Baabdullah, A.M., Mahmud, R., Ahmed, J.U, Kabir, H., Kumar, V., Kumar, U., Akram, M.S., Kabir, A., & Mukerji, B. (2019). Public service reformation: Relationship building by mobile technology. International Journal of Information Management, 49, 217-227. https://doi.org/10.1016/j.ijinfomgt.2019.03.007
- Sharma, V., Saharan, A., Gupta, H., Drave, V. A., & Singh, P. (2024). Assessing stimulus–organism responses in impulse buying among young consumers on online platforms using a hybrid BWMISM approach. Journal of Marketing Analytics, 1-20. https://doi.org/10.1057/s41270-024-00366-3
- Sievi, L., & Pawelec, M. (2025). (How) Should security authorities counter false information on social media in crisis? A democracy-theoretical and ethical reflection. International Journal of Disaster Risk Management, 116, 105093.
- Song, L., Yao, S., Liu, L., & Tso, G. (2024). Investigating binge-watching and its effect on paid subscription: A mixed-method study based on SOR theory. J Consumer Behav, 1-24. https://doi.org/10.1002/cb.2402
- Söderlund, M. (2023). Moderator variables in consumer research: A call for caution. Journal of Retailing and Consumer Services, 73, 103352. https://doi.org/10.1016/j.jretconser.2023.103352
- Sufri, S., Dwirahmadi, F., Phung, D., & Rutherford, S. (2020). A systematic review of community engagement (CE) in disaster early warning systems (EWSs). Progress in Disaster Science, 5, 100058. http://dx.doi.org/10.1016/j.pdisas.2019.100058
- Sultan, P., Wong, H.Y., & Azam, M.S. (2021). How perceived communication source and food value stimulate purchase intention of organic food: An examination of the situmulus-organism-response (SOR) model. Journal of Cleaner Production, 312, 127807. https://doi.org/10.1016/j.jclepro.2021.127807
- Tan, M. L., Vinnell, L. J., Valentin, A. P. M., Prasanna, R., & Becker, J. S. (2023). The public’s perception of an earthquake early warning system: A study on factors influencing continuance intention. International journal of Disaster Risk reduction, 97, 104032. https://doi.org/10.1007/s11846-024-00810-9
- Thomnan, E., & Magetti, M. (2020). Designing Research With Qualitative Comparative Analysis (QCA): Approaches, Challenges, and Tools. Sociological Methods & Research, 49(2), 356-386. https://doi.org/10.1177/0049124117729700
- Tong, X., Chen, Y., Zhou, S., & Yang, S. (2022). How background visual complexity influences purchase intention in the live streaming: The mediating role of emotion and the moderating role of gender. Journal of Retailing and Consumer Services, 67, 103031. https://doi.org/10.1016/j.jretconser.2022.103031
- Trahan, A., Walshe, R., & Mehta, V. (2023). Extreme heat, gender and access to preparedness measures: An analysis of the heatwave early warning systems in Ahmedabad, India. International Journal of Disaster Risk Reduction, 99, 104080. https://doi.org/10.1016/j.ijdrr.2023.104080
- Tsutsunashvili, A., Aránega, A.Y., & Urueña, R.C. (2024). Challenged global economics amid conflict in warring countries. Sustainable Technology and Entrepreneurship, 3(3), 100068. https://doi.org/10.1016/j.stae.2023.100068
- Trüdinger, E.-M., & Streckermeier, L.C. (2017). Trusting and controlling? Political trust, information and acceptance of surveillance policies: The Case of Germany. Government Information Quarterly, 34, 421-433. https://doi.org/10.1016/j.giq.2017.07.003
- United Nations for Disaster Risk Reduction. (2008). Disaster preparedness for effective response: Guidance and indicator package for implementing priority five of the Hyogo framework: Hyogo framework for action. Geneva: Building the Resilience of Nations and Communities to Disasters. UN Publication. Retrieved from: https://www.preventionweb.net/files/2909_Disasterpreparednessforeffectiveresponse.pdf
- United Nations. (2006). Global survey of early warning systems: An assessment of capacities, gaps and opportunities towards building a comprehensive global early warning system for all natural hazards. Bonn: United Nations (UN). Retrieved from: https://www.unisdr.org/2006/ppew/info-resources/ewc3/Global-Survey-of-Early-Warning-Systems.pdf
- Vailati, P.A., Cuiñas, A.A.F., & Larrañaga, J.R. (2025). Perceptions and consumption habits of print vs. digital newspaper readers. Esic Market Economic and Business Journal, 56(1), e367. DOI: 10.7200/esicm.56.367
- Velichety, S., & Shrivastava, U. (2022). Quantifying the impacts of online fake news on the equity value of social media platforms- Evidence from Twitter. International Journal of Information Management, 64, 102474. https://doi.org/10.1016/j.ijinfomgt.2022.102474
- Wang, J., Kim, J.U., & Kim, H-M. (2024). Purchase intention in TikTok streaming commerce: The role of recommendation accuracy, streamer’s attractiveness, and consumer-to-consumer interactions. Review of Managerial Science, 1-24. https://doi.org/10.1007/s11846-024-00810-9
- Wang, K-H., & Lu, W-C. (2025). AI-induced job impact: Complementary or substitution? Empirical insights and sustainable technology considerations. Sustainable Technology and Entrepreneurship, 4, 100085. https://doi.org/10.1016/j.stae.2024.100085
- Wang, G., & Musa, R. (2024). Does Green Advertising Always Effectiveness? A Multidimensional Perceived Value Analysis Based on the SOR Model. Journal of Promotion Management, 30(8), 1293-1321. https://doi.org/10.1080/10496491.2024.2393595
- Woszczynski, A., Green, A., Dodson, K., & Easton, P. (2020). Zombies, Sirens, and Lady Gaga- Oh My! Developing a Framework for Coordinated Vulnerability Disclosure for U.S. Emergency Alert Systems. Government Information Quarterly, 37, 101418. https://doi.org/10.1016/j.giq.2019.101418
- Yan, Y., Chen, H., Shao, B., & Lei, Y. (2023). How IT affordance influence customer engagement in live streaming commerce? A dual-stage analysis of PLS-SEM and fsQCA. Journal of Retailing and Consumer Services, 74, 103390. https://doi.org/10.1016/j.jretconser.2023.103390
- Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafari, A. (2019). Social media for intelligent public information and warning in disasters: An interdisciplinary review. International Journal of Information Management, 49, 190-207. https://doi.org/10.1016/j.ijinfomgt.2019.04.004
- Zhang, C., Zhoum B., Wang, Q., & Jian, Y. (2024). The consequences of environmental big data information disclosure on hard-to-abate Chinese enterprises` green information. Journal of Innovation & Knowledge, 9, 100474. https://doi.org/10.1016/j.jik.2024.100474
- Zhao, Y., & Fan, B. (2021). Understanding the key factors and configurational paths of the open government data performance: Based on fuzzy-set qualitative comparative analysis. Government Information Quarterly, 38, 101580. https://doi.org/10.1016/j.giq.2021.101580
- Zhao, J., Krott, M., Liu, J., Giessen, L., Jiang, G., & Yao, H. (2025). How can a disaster trigger substantial policy? A power analysis of the 1998 floods and forest restoration in China. International Journal of Disaster Risk Reduction, 119, 105308. https://doi.org/10.1016/j.ijdrr.2025.105308